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For a variety of “random configurations” of equal disks, the probability distributions of the Voronoi-
cell areas are obtained from a computer simulation and a comparison is made in terms of the relation be-
tween the regularity of the cell areas and the mean bulk fraction of the area occupied by the disks.

PACS number(s): 02.50.—r

I. INTRODUCTION

Random assemblies of equal spheres have been playing
important roles as simplified fundamental models for a
variety of physical systems. In two dimensions, for exam-
ple, the irreversible adsorption of objects on a surface
[1,2] is modeled by random sequential adsorption (RSA).
The growth of clusters from metal vapor deposited on
amorphous carbon substrates [3] is studied by Monte
Carlo simulation. Despite the variety of ‘“random
configurations,” they have not been compared with each
other, so that what “randomness” means is that they
remain unknown. To provide a clue, the difference in mi-
crostructure of “random configurations” of equal disks is
elucidated in this paper.

II. VORONOI STATISTICS

One of the tools in characterizing the geometry of a
random disk packing is the statistical distributions of net-
work quantities that may be derived from the different
networks possible to be constructed from the positions of
the disk centers. The most well known is the Voronoi
tessellation: A central disk is supposed to be connected
with its neighbors. Each line joining the central disk to
its neighbors is bisected by a line; the most inner area en-
closed by these lines is the Voronoi polygon. By
definition, each polygon or cell contains only one disk.
The regularity of cell area r is defined as follows:

r=a)/s)? s*=(a—<(a))?), (1)

where a is the cell area and ) denotes the average. Us-
ing the probability distribution function P(x), it becomes

r=1/[ “(x =17?P(x)dx ,
0
where x =a /{a ) and P(x) is normalized. For a Voronoi

tessellation defined from completely random points, the
I" distribution was earlier found to fit P(x) [3,4]:

P(x)dx=r"x""1e ™dx /T(r) . )

I' is the gamma function and the shape of the distribution
is determined only by the single parameter r. In what fol-
lows, a variety of “random configurations” of equal disks
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are compared with each other through a relationship be-
tween the regularity » and the coverage y or the mean
bulk fraction of the area occupied by disks.

A summary of algorithms for generating “random
configurations” is listed in Table I. The random-
sequential-adsorption model [S—7] was constructed in a
square of side 40 in units of the disk diameter. The cov-
erage was y =0.542 at the jammed stage, being close to
the limit y =0.5472 by Hinrichsen, Feder, and Jdgssang
[8]. For each RSA configuration the Voronoi tessellation
was conducted to obtain the regularity of cell areas. The
r-versus-y relations are plotted by cross marks in Fig. 1.
It is interesting to note that the r increases with increas-
ing y and reaches a saturation point at the limiting cover-
age y =0.5472. The saturation means that the RSA pro-
cedure is not able to make the configuration denser.

To make it denser, a RSA configuration was compact-
ed [4] as explained in Table I(b). From the Voronoi
tessellation for every iteration of compaction, the r-
versus-y relation is obtained as shown by circles in Fig. 1.
The dotted line is estimated from the data of Hinrichsen,
Feder, and Jgssang [8]. They reported that the coverage
reached y =0.7643 after 1000 iterations of compaction
and its limiting value was y =0.772.

Bennett [9] studied the geometry of serially deposited
amorphous aggregates. Following his simulation pro-
cedure in Table I(c), a random aggregate of 1050 disks
was constructed in a computer. The packing fractions
were y =0.839 and 0.823, respectively, for inner 86 and
outer 200 disks of the aggregate. Owing to the finite-size
effect, it is a little higher than Berryman’s prediction [10],
y=0.82, for the dense random packing in two dimen-
sions. The Voronoi tessellation for the aggregate yields
the r-versus-y relation as depicted by curve ¢ in Fig. 1.

The Monte Carlo simulation [11] outlined in Table I(d)
also yields “random configurations,” whose Voronoi-
statistics study [12] gives the r-versus-y relation as plotted
by triangles in Fig. 1. The probability distribution func-
tion of cell areas reported in Ref. [3] gives r=3.57 at
y =0, in agreement with the result of the RSA
configuration.

Finally, two regular packings with random vacancies
explained in Table I(e) and I(f) were constructed for com-
parison with the configurations mentioned above. The
Voronoi tessellation gives the regularity in relation to the
coverage as depicted by curves e and f in Fig. 1.
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TABLE I. Algorithms for generating random configurations of equal disks.

(a) Random-sequential-adsorption (RSA) model
Equal disks are placed at random in a square with periodic boundary conditions. If the last placed disk overlaps any other
ones, it is removed at once. Once a disk has been placed, its position is permanently fixed. When no more disks can be
placed without overlapping those already present, the jamming limit has been reached and the process stops.

(b) Random dense packings
Starting with the RSA configuration, the surface is ‘“‘contracted” homogeneously [4]. One iteration step of the contraction
procedure is as follows: First, a Voronoi polygon is constructed around every disk. Each disk center is then moved to the
center of the largest inscribed circle in the respective polygons. Then all the disk radii are increased by the same amount
until the first disk pair is in contact.

(¢) Amorphous aggregate
Emerging from a direction randomly determined, a new disk approaches an initial seed and settles at a stable position after
rolling down on disks already in place.

(d) Monte Carlo simulation
n points are placed in a square box using randomly generated coordinates. The Voronoi tessellation is constructed for this
configuration, with periodic boundary conditions, and the hard-disk diameter is set equal to the minimum nearest-neighbor
distance. A configuration with a higher packing fraction is obtained by compressing a low-packing-fraction configuration.
The compression is achieved using the Monte Carlo algorithm with a high applied pressure. The Monte Carlo method al-
lows the disks to move within the system while the high applied pressure gradually squeezes out the free area.

(e) Loosest packing with random vacancies
The prescribed number of disks are eliminated randomly from the regular square packing (y =0.785).

(f) Closest packing with random vacancies
The prescribed number of disks are eliminated randomly from the regular closest packing (y =0.907).

%Y T T — T T ™ ] III. CONCLUDING REMARKS

A variety of “random configurations” of equal disks, as
listed in Table I, have been compared with each other in
10" F E terms of the probability distribution of the Voronoi-cell
1 areas. Figure 1 shows the regularity r in relation to the
coverage y. The random sequential adsorption and its
compaction model lead to a straight line in Fig. 1, which
is expressed by

ro
a3
N

r=3.6exp(5.4y) . (3)

Regularity

] This is a new relation expressing the behavior of the regu-
i larity. The limiting value »=3.6 at y =0 is set equal to
the theoretical result r=27/v'3 explained by Weaire,
Kermode, and Wejchert [4]. Two saturation points exist
in the regularity r at y =0.5472 for the RSA model and
y=0.772 for the random loose packing [8]. Consider a
point lying on the curve, Eq. (3). If we make the corre-
sponding particle assembly partially ordered, the point
will move upward from the curve, while if we remove
some disks from the assembly, it will move downward.
Although existence of the region y >0.772 remains un-
Coverage y ) known, Eq. (3) may stand for the most random
configuration for fixed y. In the region higher than Eq.
FIG. 1. Regularity r in relation to coverage y. X, a; @ and (3), ordered arrangements are apt to exist locally in the
-+, b; A, d. Letters a—f correspond to random configurations ~ configuration, while in the region lower than Eq. (3),
in Table I. empty holes are apt to exist in the configuration.
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